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Abstract
The motion of spinning test particles along circular orbits in static vacuum
spacetimes belonging to the Weyl class is discussed. Spin alignment and
coupling with background parameters in the case of superimposed Weyl fields,
corresponding to a single Schwarzschild black hole and a single Chazy–Curzon
particle as well as to two Schwarzschild black holes and two Chazy–Curzon
particles, are studied in detail for standard choices of supplementary conditions.
Applications to the gravitomagnetic ‘clock effect’ are also discussed.

PACS number: 04.20.Cv

1. Introduction

The study of spinning test particles in general relativity started long ago after the pioneering
works of Mathisson and Papapetrou [1, 2]. The standard model for the description of spinning
test particles in general relativity is actually known as the Mathisson–Papapetrou model and
it consists of a set of 10 partial differential equations for 13 unknown variables needed to
describe the spinning test particle, i.e. the (timelike) generalized 4-momentum of the particle
P, the (antisymmetric) spin 2-tensor S and the unit timelike vector U tangent to the worldline
used to perform a multipole moment reduction, truncated to the first order to define a spin
structure for the particle. To complete the scheme three further conditions relating P, S and
U are necessary and there exist natural choices for this, widely discussed in the literature
[3–5]. Detailed studies concerning spinning test particles in general relativity are due to
Dixon [6–10], Taub [11], Mashhoon [12, 13] and Ehlers and Rudolph [14].
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Recent claims concerning the various couplings between spin and rotation [15], spin and
acceleration [16] have sparked new interest and motivated further investigations from both the
theoretical and experimental points of view.

In this paper we study the motion of spinning test particles on circular orbits in static
vacuum spacetimes belonging to the Weyl class [17, 18], with explicit examples for one-body
and two-body solutions consisting of Schwarzschild black holes and Chazy–Curzon particles,
and compare the results obtained by using different supplementary conditions, generalizing
the pioneering work of Tod, de Felice and Calvani [19], and the most recent work by Bini,
de Felice and Geralico [20, 21].

The paper is organized as follows. In section 2 we review the properties of timelike
spatially circular orbits followed by non-spinning test particles in axisymmetric static vacuum
spacetimes [22]. The Mathisson–Papapetrou equations of motion for spinning test particles
in circular motion are introduced in section 3, assuming constant frame components for the
spin tensor with respect to a frame adapted to the symmetries of the spacetime. The solution
is then characterized in the subsequent subsections in terms of the various possible choices
of Corinaldesi and Papapetrou, Pirani and Tulczyjew supplementary conditions; the limiting
situation of small spin is described too. In section 4 the so-called gravitomagnetic ‘clock
effect’ due to the difference in the arrival times of two oppositely rotating orbits is deduced
when the motion is confined on particular symmetry hyperplanes. Finally, applications to
specific Weyl spacetimes are discussed in section 5, in order to make the whole treatment
more concrete.

In what follows Greek indices run from 0 to 3 while Latin indices run from 1 to 3; the
spacetime metric signature is +2 and geometrized units are used such that both the velocity of
light in vacuum c and the gravitational constant G are set equal to one.

2. Vacuum Weyl spacetimes and circular orbits

Spatially circular orbits are most important in astrophysics; therefore, we judge it useful to
make available all the geometrical properties of those orbits in the Weyl class of spacetimes.
As is well known, axisymmetric, static vacuum solutions of the Einstein field equations can
be described by the Weyl formalism [17]. The corresponding line element in Weyl canonical
coordinates [18] (x0 = t, x1 = ρ, x2 = z, x3 = φ) is

ds2 = −e2ψ dt2 + e2(γ−ψ)[dρ2 + dz2] + ρ2 e−2ψ dφ2, (2.1)

where the functions ψ and γ depend on coordinates ρ and z only. The vacuum Einstein field
equations reduce to the following:

ψ,ρρ +
1

ρ
ψ,ρ + ψ,zz = 0,

γ,ρ − ρ
[
ψ2

,ρ − ψ2
,z

] = 0, γ,z − 2ρψ,ρψ,z = 0.

(2.2)

It is useful to introduce the orthonormal frame

et̂ = e−ψ∂t , eρ̂ = eψ−γ ∂ρ, eẑ = eψ−γ ∂z, eφ̂ = eψ

ρ
∂φ, (2.3)

with dual frame

ωt̂ = eψ dt, ωρ̂ = eγ−ψ dρ, ωẑ = eγ−ψ dz, ωφ̂ = ρ e−ψ dφ. (2.4)

In metric (2.1) let us consider a family of test particles spatially moving along the φ direction
with constant speed; the (timelike) 4-velocity U associated with a generic orbit within the
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family is the following:

U = �ζ [∂t + ζ∂φ] = γn[n + νeφ̂] = cosh αn + sinh αeφ̂, (2.5)

where n ≡ et̂ denotes the 4-velocity of the standard family of static observers; γn = −U ·n =
(1 − ν2)−1/2 = �ζ eψ is the Lorentz factor and ζ , ν or α are respectively the angular velocity,
the speed and the rapidity parametrization of the whole family. They are all constant along
the orbit and satisfy the mutual relations

ν = e−2ψρζ = tanh α. (2.6)

�ζ is defined by the timelike condition U · U = −1 as

−�−2
ζ = gtt + ζ 2gφφ = −e2ψ + ζ 2ρ2 e−2ψ = −e2ψ

γ 2
n

. (2.7)

Moreover, the physical dimension of ζ is [length]−1, while ν, γn and �ζ are pure numbers8.
For later purposes, it is useful to introduce the (spacelike) unit vector Eφ̂ orthogonal to U

in the (t, φ) plane, obtained by boosting eφ̂ in the local rest space of U

Eφ̂ = �̄ζ̄ [∂t + ζ̄ ∂φ] = γn(νn + eφ̂), �̄ζ̄ = �ζ

[
ζ

ζ̄

]1/2

, ζ̄ = − 1

ζ

e4ψ

ρ2
, (2.8)

so that Eφ̂ · Eφ̂ = 1 and Eφ̂ · U = 0.
It is worth noting also that the case of null orbits for rotating photons corresponds to

ζnull± = ±e2ψ

ρ
, νnull± = ±1. (2.9)

The non-vanishing components of the 4-acceleration a(U) = ∇UU of U are given by

a(U)ρ̂ = eψ−γ

e4ψ − ρ2ζ 2
[ψ,ρ(e

4ψ + ρ2ζ 2) − ρζ 2] = eψ−γ γ 2
n

[
ψ,ρ − ν2

ρ
(1 − ρψ,ρ)

]
,

a(U)ẑ = eψ−γ ψ,z

e4ψ + ρ2ζ 2

e4ψ − ρ2ζ 2
= eψ−γ ψ,zγ

2
n (1 + ν2).

(2.10)

They all have dimensions of length−1. The absolute value of the acceleration is

κ = ‖a(U)‖ = eψ−γ γ 2
n

[(
ψ,ρ − ν2

ρ
(1 − ρψ,ρ)

)2

+ ψ2
,z(1 + ν2)2

]1/2

, (2.11)

and it is symmetric as a function of ν; one can also introduce polar coordinates in the
acceleration plane (κ, χ)

a(U)ρ̂ = κ cos χ, a(U)ẑ = κ sin χ, tan χ = ψ,z(1 + ν2)

ψ,ρ − ν2

ρ
(1 − ρψ,ρ)

, (2.12)

so that the unit vector aligned with the acceleration is

e1 = cos χeρ̂ + sin χeẑ, (2.13)

and χ (depending on ν or α) is constant along U: dχ/dτU = 0. Moreover both the unit vector
associated with the spatial 3-velocity of the particle U with respect to static observer n

ν̂(U, n) ≡ eφ̂, (2.14)

8 The relative dimensions of the 4-vector U vary with the components consistently with the dimensions of the
corresponding coordinate basis vector. Hence [Ut ] = 1 and [Uφ ] = [length]−1. In an analogous way, the
4-vector n = e−ψ∂t has for its only component the dimensions [nt ] = 1. From the above it follows correctly that
[γn] = [eψUt ] = 1.
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and (minus) the unit vector associated with the spatial 3-velocity of the observers n with
respect to particle U

[−ν̂(n, U)] ≡ Eφ̂ (2.15)

can be used to define the relative curvatures [23–26] of the orbit of particle and observer. This
can be done by evaluating the derivatives along U of the relative velocities unit vectors

Deφ̂

dτU

,
DEφ̂

dτU

, (2.16)

which, in the spacetime metric under consideration (only), both belong to the (ρ, z) plane,
and define in turn the centripetal acceleration

Deφ̂

dτU

= a(Centrip) (2.17)

and the centrifugal one

DEφ̂

dτU

= −a(Centrif). (2.18)

For a complete discussion about centripetal and centrifugal forces in general relativity see
[23–26], where the original definition uses a rescaling of (2.17) and (2.18) by convenient
factors of γn and ν. Here we do not want to enter the discussion of what is the more
appropriate definition of centripetal and centrifugal forces; therefore, these factors will not be
introduced. The result is

a(Centrip) = γnνk(lie),

where k(lie) = −∇ ln(
√

gφφ), with components

k(lie)ρ̂ = −eψ−γ 1 − ρψ,ρ

ρ
, k(lie)ẑ = eψ−γ ψ,z, (2.19)

or, by using a polar representation for k(lie),

k(lie)ρ̂ = κ(lie) cos χ(lie), k(lie)ẑ = κ(lie) sin χ(lie), tan χ(lie) = ρψ,z

ρψ,ρ − 1
. (2.20)

Moreover9

−a(Centrif) = DEφ̂

dτU

= −eψ−γ γ 2
n ν

[
2ρψ,ρ − 1

ρ
eρ̂ + 2ψ,zeẑ

]
. (2.21)

The discussion presented above is quite standard now and it follows the notation of [24].
Special orbits can be selected so that

ζ± = ±e2ψ

[
ψ,ρ

ρ(1 − ρψ,ρ)

]1/2

, ν± = ±
[
−1 +

1

ρψ,ρ

]−1/2

, (2.22)

9 The relative dimensions of the 4-vector Eφ̂ vary according to its components. Specifically we have from its

definition [Et

φ̂
] = 1 and [Eφ

φ̂
] = [length]−1. However the dimensions of the 4-vector DEφ̂/dτU depend on the

combination of the components of U,Eφ̂ and the connection coefficients which appear in the covariant derivative; it
turns out that the only non-zero components are( DEφ̂

dτU

)ρ̂

,

( DEφ̂

dτU

)ẑ

and both have dimensions of [length]−2.
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which permit the component a(U)ρ̂ to vanish; the quantities �ζ and a(U)ẑ then become10

�ζ± = e−ψ

[
1 − ρψ,ρ

1 − 2ρψ,ρ

]1/2

, a(U)ẑ
∣∣
ζ=ζ±

= eψ−γ ψ,z

1 − 2ρψ,ρ

. (2.23)

Finally, by using ν± and k(lie) the components of the acceleration can be cast in the form

a(U)ρ̂ = k(lie)ρ̂γ
2
n

(
ν2 − ν2

±
)
, a(U)ẑ = k(lie)ẑγ

2
n (1 + ν2), (2.24)

with the magnitude κ (see equation (2.11)) given by

κ = γ 2
n

[
k(lie)

2
ρ̂

(
ν2 − ν2

±
)2

+ k(lie)
2
ẑ (1 + ν2)2

]1/2
, (2.25)

and the relation between χ and χ(lie) which becomes

tan χ = 1 + ν2

ν2 − ν2±
tan χ(lie). (2.26)

Along each circular orbit one can set a Frenet–Serret (FS) frame [27] with e0 = U and
e1, e2, e3 satisfying the system of evolution equations

De0

dτU

= κe1,
De1

dτU

= κe0 + τ1e2,

De2

dτU

= −τ1e1 + τ2e3,
De3

dτU

= −τ2e2,

(2.27)

where e0 is given by (2.5), e1 is given by (2.13), e2 = dU/dα ≡ Eφ̂, e3 = −de1/dχ and

τ1 = −1

2

dκ

dα
= − 1

2γ 2
n

dκ

dν
, τ2 = −1

2
κ

dχ

dα
= − κ

2γ 2
n

dχ

dν
. (2.28)

Using (2.25) and (2.26) the latter become

τ1 = −νγ 4
n

κ

[
k(lie)

2
ρ̂

γ 2±

(
ν2 − ν2

±
)

+ 2k(lie)
2
ẑ (1 + ν2)

]
,

τ2 = νγ 2
n

k(lie)ρ̂k(lie)ẑ

κ

(
1 + ν2

±
)
,

(2.29)

with γ± = 1/
√

1 − ν2
±. The dual of the chosen FS frame {ω0, ω1, ω2, ω3} in terms of the

frame (2.4) is given by

ω0 = −U�, ω1 = cos χωρ̂ + sin χωẑ,

ω2 ≡ E
�

φ̂
= γn[−νωt̂ + ωφ̂], ω3 = sin χωρ̂ − cos χωẑ.

(2.30)

We also note that the spatial FS frame e1, e2, e3 rotates with respect to a Fermi–Walker
transported frame along U with angular velocity

ω(FS) = τ1e3 + τ2e1, (2.31)

which has magnitude

‖ω(FS)‖ = |ν|γ 2
n

[
k(lie)

2
ρ̂

γ 4±
+ 4k(lie)

2
ẑ

]1/2

. (2.32)

A discussion of special orbits and their FS characterization can be found in [22].

10 The further requirement a(U)ẑ = 0 (and so ψ,z = 0) gives the conditions for circular geodesics. These geodesics
become null at the radius such that ψ,ρ = 1/2ρ.
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3. Spinning test particles

The Mathisson–Papapetrou equations of motion for a spinning test particle are given by

DP µ

dτU

= −1

2
Rµ

ναβUνSαβ ≡ F (spin)µ (3.1)

DSµν

dτU

= P µUν − P νUµ, (3.2)

where P µ is the total 4-momentum of the particle, and Sµν is a (antisymmetric) spin tensor;
U is the timelike unit tangent vector of the ‘centre line’ used to make the multipole reduction.
Equations (3.1) and (3.2) define the evolution of P and S only along the worldline of U, so a
correct interpretation of U is that of being tangent to the true worldline of the spinning particle.
In this case, both U and P are linear combinations of Killing vector fields; this property leads
to a big simplification since all the FS intrinsic quantities of the worldline U (curvature and
torsion), the magnitude of P, the FS frame components and the algebraic invariant of S, namely
s2 = 1

2SµνS
µν , and other kinematically relevant quantities, will be (covariantly) constant along

U.
Following the analysis made in [20, 21], contracting both sides of equation (3.2) with Uν ,

one obtains

P µ = −(U · P)Uµ − Uν

DSµν

dτU

≡ mUµ + P µ
s , (3.3)

where m is the particle’s bare mass [20, 21]. Equation (3.2) implies

St̂φ̂ = 0, Sρ̂ẑ = 0, k(lie)ρ̂
[
ν2

±Sẑt̂ + νSẑφ̂

]
+ k(lie)ẑ[Sρ̂t̂ − νSρ̂φ̂] = 0. (3.4)

The spin tensor then takes the form

S = ωρ̂ ∧ [Sρ̂t̂ω
t̂ + Sρ̂φ̂ωφ̂] + ωẑ ∧ [Sẑt̂ω

t̂ + Sẑφ̂ωφ̂]. (3.5)

It is clear from (3.3) that Ps is orthogonal to U; moreover it turns out to be also aligned
with Eφ̂

Ps = msEφ̂, (3.6)

where ms ≡ ‖Ps‖ is given by

ms = γn

{
k(lie)ρ̂

[
νSρ̂t̂ + ν2

±Sρ̂φ̂

]
+ k(lie)ẑ[νSẑt̂ − Sẑφ̂]

}
. (3.7)

From (3.3) and (3.6) the total 4-momentum P can be written in the form P = µUp, with

Up = γp[et̂ + νpeφ̂], νp = ν + ms/m

1 + νms/m
, µ = γn

γp

(m + νms) (3.8)

and γp = (
1 − ν2

p

)−1/2
. Since Up is a unit vector, the quantity µ can be interpreted as the total

mass of the particle in the rest-frame of Up.
Let us now consider the equation of motion (3.1). The spin-force is equal to:

F (spin) = γn

{
Sρ̂t̂

[
∂ρ̂k(lie)ρ̂ − k(lie)

2
ρ̂

(
1 + ν2

±
)

+
2ν2

±
1 + ν2±

k(lie)
2
ẑ

]

+ νSρ̂φ̂

[
−∂ρ̂k(lie)ρ̂ + k(lie)

2
ρ̂ +

k(lie)
2
ẑ

γ 2±

]
− (Sẑt̂ − νSẑφ̂)

×
[
−∂ρ̂k(lie)ẑ + ρκ2

(lie)k(lie)ẑ +
k(lie)ẑ

k(lie)ρ̂

κ2
(lie) + 2k(lie)

2
ρ̂ν

2
±

1 + ν2±

]}
eρ̂
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+ γn

{
(Sρ̂t̂ − νSρ̂φ̂)

[
∂ẑk(lie)ρ̂ +

k(lie)ẑ

k(lie)ρ̂

κ2
(lie) + 2k(lie)

2
ρ̂ν

2
±

1 + ν2±

]

+ Sẑt̂

[
∂ẑk(lie)ẑ − k(lie)

2
ρ̂ν

4
± − k(lie)

2
ẑ

1 + ν2±

]
− νSẑφ̂

[
∂ẑk(lie)ẑ

+

(
k(lie)

2
ρ̂ − k(lie)

2
ẑ

)
ν2

±
1 + ν2±

]}
eẑ, (3.9)

while the term on the left-hand side of equation (3.1) can be written, from (3.3) and (3.6), as

DP

dτU

= ma(U) + ms

DEφ̂

dτU

, (3.10)

where a(U) = κe1 and DEφ̂/dτU = −τ1e1 + τ2e3 are given in (2.27), and the quantities
µ,m,ms are constant along the worldline of U. Hence equation (3.1) can be written as11

0 = (mκ − msτ1) cos χ + msτ2 sin χ − F
(spin)

ρ̂ ,

0 = (mκ − msτ1) sin χ − msτ2 cos χ − F
(spin)

ẑ ,
(3.11)

or, more explicitly,

0 = γ 2
n

[
m

(
ν2 − ν2

±
)

+ ms

ν

γ 2±

]
k(lie)ρ̂ − F

(spin)

ρ̂ ,

0 = γ 2
n [m(1 + ν2) + 2msν]k(lie)ẑ − F

(spin)

ẑ .

(3.12)

It is useful to introduce the quadratic invariant

s2 = 1
2SµνS

µν = −S2
ρ̂t̂

− S2
ẑt̂

+ S2
ρ̂φ̂

+ S2
ẑφ̂

. (3.13)

From equation (3.5) and by using the relations

ωt̂ = γn

[−U� + νE
�

φ̂

]
, ωρ̂ = cos χω1 + sin χω3,

ωφ̂ = γn

[−νU� + E
�

φ̂

]
, ωẑ = sin χω1 − cos χω3,

(3.14)

where ω1 and ω3 are defined in equation (2.30) and X� denotes the 1-form associated with a
vector X, one has the relation

S = γn

[
(Sρ̂t̂ + νSρ̂φ̂)U� ∧ ωρ̂ + (νSρ̂t̂ + Sρ̂φ̂)ωρ̂ ∧ E

�

φ̂

+ (Sẑt̂ + νSẑφ̂)U� ∧ ωẑ + (νSẑt̂ + Sẑφ̂)ωẑ ∧ E
�

φ̂

]
. (3.15)

Since the components of S are assumed to be constant along U, then from the FS formalism
one finds

DS

dτU

= msE
�

φ̂
∧ U�, (3.16)

or, from equations (3.2) and (3.6),

Ps = msE
�

φ̂
, (3.17)

with

ms = −γn{[(τ1 + κν) cos χ − τ2 sin χ ]Sρ̂t̂ + [(ντ1 + κ) cos χ − ντ2 sin χ ]Sρ̂φ̂

+ [τ2 cos χ + (τ1 + κν) sin χ ]Sẑt̂ + [ντ2 cos χ + (ντ1 + κ) sin χ ]Sẑφ̂}. (3.18)

11 Equivalently, in the FS frame, one obtains: 0 = mκ − msτ1 − F
(spin)

1 , 0 = msτ2 − F
(spin)

2 .
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To discuss the features of the motion we need to supplement equation (3.11) with further
conditions. We shall do this in the next section following the standard approaches existing in
the literature:

1. Corinaldesi–Papapetrou [3] conditions (CP): Stν = 0,
2. Pirani [4] conditions (P): SµνUν = 0,
3. Tulczyjew [5] conditions (T): SµνPν = 0.

The above supplementary conditions are necessary but somewhat arbitrary. The aim of
our analysis is also that of comparing the physical implications on the motion of a spinning
body by each of those conditions and identifying the most significant one.

Since our general analysis leads to rather general complicated expressions we shall specify
the general equations to the particular case of hyperplanes characterized by k(lie)ẑ = 0 (and so
∂ρ̂k(lie)ẑ = 0 = ∂ẑk(lie)ρ̂ too), namely confining ourselves to the mirror symmetry hyperplanes
such that ψ,z = 0, which exist for many interesting solutions. In this case, the circular orbit
with ν = ν± (ζ = ζ±) is geodesic. Now constraints (3.4) become

St̂φ̂ = 0, Sρ̂ẑ = 0, St̂ ẑ = ν

ν2±
Sẑφ̂; (3.19)

the quantity ms defined by (3.7) can be written as

ms = γnk(lie)ρ̂
[
νSρ̂t̂ + ν2

±Sρ̂φ̂

]
, (3.20)

and the spin force (3.9) simplifies as follows:

F (spin) = γn

{
Sρ̂t̂

[
∂ρ̂k(lie)ρ̂ − k(lie)

2
ρ̂

(
1 + ν2

±
)]

+ νSρ̂φ̂

[−∂ρ̂k(lie)ρ̂ + k(lie)
2
ρ̂

]}
eρ̂

+ γn

{
Sẑt̂

[
∂ẑk(lie)ẑ − k(lie)

2
ρ̂ν

4
±

1 + ν2±

]
− νSẑφ̂

[
∂ẑk(lie)ẑ +

k(lie)
2
ρ̂ν

2
±

1 + ν2±

]}
eẑ. (3.21)

Recalling conditions (3.19), the equations of motion (3.12) reduce to

0 = γn

[
m

(
ν2 − ν2

±
)

+ ms

ν

γ 2±

]
k(lie)ρ̂ − {

Sρ̂t̂

[
∂ρ̂k(lie)ρ̂ − k(lie)

2
ρ̂

(
1 + ν2

±
)]

+ νSρ̂φ̂

[−∂ρ̂k(lie)ρ̂ + k(lie)
2
ρ̂

]}
(3.22)

0 = γnνSẑφ̂∂ẑk(lie)ẑ

[
1 +

1

ν2±

]
.

The latter equation implies Sẑφ̂ = 0, since ∂ẑk(lie)ẑ �= 0 in general, and so St̂ẑ = 0 too.
Therefore, the spin tensor turns out to be completely determined in this case by two components
only, namely St̂ρ̂ and Sρ̂φ̂ , related by the first equation of (3.22).

3.1. The Corinaldesi–Papapetrou (CP) supplementary conditions

The CP supplementary conditions require St̂ρ̂ = 0 = St̂ẑ, so that

S = S(CP ) ∧ ωφ̂, S(CP ) = Sρ̂φ̂ωρ̂ + Sẑφ̂ωẑ. (3.23)

From equation (3.7) we have that

ms = sγn

κ(lie)

[
k(lie)

2
ρ̂ν

2
± − k(lie)

2
ẑ

]; (3.24)

the spin force (see equation (3.9)) is given by

F (spin) = sγnνF (Riem), (3.25)
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where F (Riem) does not depend on s and ν:

F (Riem) = 1

κ(lie)

{
−1

2
∂ρ̂κ

2
(lie) + κ2

(lie)k(lie)ρ̂ +
κ2

(lie)k(lie)
2
ẑ

k(lie)ρ̂

[
ρk(lie)ρ̂ +

1

1 + ν2±

]}
eρ̂

+
1

κ(lie)

{
−1

2
∂ẑκ

2
(lie) + κ2

(lie)k(lie)ẑ

}
eẑ. (3.26)

Now, by solving the first equation of (3.12) with respect to s once equations (3.25) and (3.26)
have been used, we get

s = −mγn

ν

(
ν2 − ν2

±
) [

γ 2
n

γ 2±

k(lie)
2
ρ̂ν

2
± − k(lie)

2
ẑ

κ(lie)
− F (Riem)

ρ̂

k(lie)ρ̂

]−1

, (3.27)

and the corresponding solution for ν ≡ sν± is obtained by substituting equation (3.27) into
the second equation of (3.12):

sν± = ±
{

−1 + k(lie)ρ̂
(
1 + ν2

±
) {

∂ẑκ
2
(lie) − 2k(lie)ẑ

[
k(lie)

2
ρ̂

γ 2±
+ 2k(lie)

2
ẑ

]}

×
{
k(lie)ρ̂∂ẑκ

2
(lie) − k(lie)ẑ∂ρ̂κ

2
(lie) + 2

κ2
(lie)k(lie)

3
ẑ

k(lie)ρ̂

[
ρk(lie)ρ̂ +

1

1 + ν2±

]}−1
}1/2

.

(3.28)

Obviously, by introducing this value of ν into the previous equation (3.27), we get the solution
s as a function of ρ and z.

As anticipated, let us now consider the case of circular orbits on mirror symmetry
hyperplanes characterized by k(lie)ẑ = 0. The spin tensor is written as

S = sωρ̂ ∧ ωφ̂, (3.29)

being S(CP ) = sωρ̂ as from equations (3.4), (3.13) and (3.23), and the first of equations (3.22)
reduces to

0 = m
(
ν2 − ν2

±
)

+
sν

γn

{
∂ρ̂ ln k(lie)ρ̂ − k(lie)ρ̂

[
1 − γ 2

n

γ 2±
ν2

±

]}
. (3.30)

By solving this equation with respect to s, we obtain

s = m
γn

ν

ν2 − ν2
±

−∂ρ̂ ln k(lie)ρ̂ + k(lie)ρ̂
[
1 − γ 2

n

γ 2±
ν2±

] . (3.31)

In the limit of small s, the preceding expression leads to

ν = ±ν± + N (CP )s + O(s2), N (CP ) = 1

2γ±

[
−∂ρ̂ ln k(lie)ρ̂ +

k(lie)ρ̂

γ 2±

]
. (3.32)

The corresponding angular velocity ζ and its reciprocal are

ζ = ±ζ± +
e2ψ

ρ
N (CP )s + O(s2),

1

ζ
= ± 1

ζ±
− e2ψ

ρζ 2±
N (CP )s + O(s2), (3.33)

the metric function ψ being evaluated on the symmetry hyperplane under consideration. The
total 4-momentum P is given by equation (3.8) with

ms = sγnk(lie)ρ̂ν
2
±. (3.34)
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In the limit of small s the linear velocity νp reduces to

νp = ±ν± + N (CP )
p s + O(s2), N (CP )

p = N (CP ) +
k(lie)ρ̂

m

ν2
±

γ±
. (3.35)

The corresponding angular velocity ζp and its reciprocal are

ζp = ±ζ± +
e2ψ

ρ
N (CP )

p s + O(s2),
1

ζp

= ± 1

ζ±
− e2ψ

ρζ 2±
N (CP )

p s + O(s2). (3.36)

3.2. The Pirani (P) supplementary conditions

The P supplementary conditions (SµνUν = 0) require

Sρ̂t̂ + Sρ̂φ̂ν = 0, Sẑt̂ + Sẑφ̂ν = 0, (3.37)

so that

S = S(P ) ∧ E
�

φ̂
, S(P ) = 1

γn

[Sρ̂φ̂ωρ̂ + Sẑφ̂ωẑ]. (3.38)

From equation (3.7) we have that

ms = −s
γ 2

n

γ 2±�

[
k(lie)

2
ρ̂

(
ν2 − ν2

±
)

+ 2γ 2
±k(lie)

2
ẑ (1 + ν2)

]
(3.39)

with

� =
[

k(lie)
2
ρ̂

γ 4±
+ 4k(lie)

2
ẑ

]1/2

; (3.40)

the spin force (see equation (3.9)) is given by

F (spin) = sγ 2
n νF (Riem), (3.41)

where F (Riem) does not depend on s and ν; then

F (Riem) = 2

�

{
− 1

γ 2±
k(lie)ρ̂∂ρ̂k(lie)ρ̂ − 2k(lie)ẑ∂ρ̂k(lie)ẑ + 2ρκ2

(lie)k(lie)
2
ẑ

+
2 + ν2

±
2γ 2±

k(lie)
3
ρ̂ +

5 + ν2
±
(
4 + 3ν2

±
)

2
(
1 + ν2±

) k(lie)ρ̂k(lie)
2
ẑ +

2

1 + ν2±

k(lie)
4
ẑ

k(lie)ρ̂

}
eρ̂

+
2

�

{
− 1

γ 2±
k(lie)ρ̂∂ẑk(lie)ρ̂ − 2k(lie)ẑ∂ẑk(lie)ẑ +

1

γ 2±
k(lie)

2
ρ̂k(lie)ẑ

}
eẑ. (3.42)

Now, by solving the first equation of (3.12) with respect to s once equations (3.41) and (3.42)
have been used, we obtain

s = −mγ 2
n

(
ν2 − ν2

±
) [

1

γ 2±

κτ1

�
− γ 2

n ν
F (Riem)

ρ̂

k(lie)ρ̂

]−1

, (3.43)

and the corresponding solution for ν ≡ sν± is derived by substituting equation (3.43) into the
second equation of (3.12):

sν± = ±
{

−1 +
k(lie)ρ̂

(
1 + ν2

±
)

D

[
−4k(lie)ẑ∂ẑk(lie)ẑ − 2

γ 2±
k(lie)ρ̂∂ẑk(lie)ρ̂ +

1

γ 4±
k(lie)

2
ρ̂k(lie)ẑ

]}1/2

D = 2

[
−k(lie)

2
ρ̂

γ 2±
+ 2k(lie)

2
ẑ

]
∂ẑk(lie)ρ̂ + 2k(lie)ρ̂k(lie)ẑ

(
ν2

± − 3
)
∂ẑk(lie)ẑ

+
1

1 + ν2±

k(lie)ẑ

k(lie)ρ̂

[
k(lie)

4
ρ̂

γ 4±
− (

3ν2
± + 7

)(
1 + ν2

±
)
k(lie)

2
ρ̂k(lie)

2
ẑ − 4k(lie)

4
ẑ

]
. (3.44)
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Let us now consider the case k(lie)ẑ = 0. The spin tensor is written as

S = sωρ̂ ∧ E
�

φ̂
, (3.45)

being S(P ) = sωρ̂ as from equations (3.4), (3.13) and (3.38), so that (Sρ̂t̂ , Sρ̂φ̂) = (−sγnν, sγn)

and equation (3.22) reduces to

0 = m
(
ν2 − ν2

±
)

+ sν

{
2∂ρ̂ ln k(lie)ρ̂ − k(lie)ρ̂

[
2 + ν2

± +
γ 2

n

γ 2±

(
ν2 − ν2

±
)]}

. (3.46)

By solving this equation with respect to s, we obtain

s = m

ν

ν2 − ν2
±

−2∂ρ̂ ln k(lie)ρ̂ + k(lie)ρ̂
[
2 + ν2± + γ 2

n

γ 2±

(
ν2 − ν2±

)] . (3.47)

In the limit of small s the preceding expression leads to

ν = ±ν± + N (P )s + O(s2), N (P ) = − 1

2m

[
2∂ρ̂ ln k(lie)ρ̂ − k(lie)ρ̂

(
2 + ν2

±
)]

. (3.48)

The corresponding angular velocity ζ and its reciprocal are

ζ = ±ζ± +
e2ψ

ρ
N (P )s + O(s2),

1

ζ
= ± 1

ζ±
− e2ψ

ρζ 2±
N (P )s + O(s2). (3.49)

The total 4-momentum P is given by equation (3.8) with

ms = −sγ 2
n k(lie)ρ̂

[
ν2 − ν2

±
]
, νp = ν + O(s2). (3.50)

The angular velocity ζp and its reciprocal are

ζp = ζ + O(s2),
1

ζp

= 1

ζ
+ O(s2), (3.51)

with ζ given by equation (3.49).

3.3. The Tulczyjew (T) supplementary conditions

The T supplementary conditions (SµνPν = 0) require

Sρ̂t̂ + Sρ̂φ̂νp = 0, Sẑt̂ + Sẑφ̂νp = 0, (3.52)

so that

S = S(T ) ∧ γp[−νpωt̂ + ωφ̂], S(T ) = 1

γp

[Sρ̂φ̂ωρ̂ + Sẑφ̂ωẑ]. (3.53)

From equation (3.7) we have that

ms = − sγnγp

�

[
k(lie)

2
ρ̂

(
ννp − ν2

±
)(

ν − νpν2
±
)

+ k(lie)
2
ẑ (ν + νp)(1 + ννp)

]
(3.54)

where

� = [
k(lie)

2
ρ̂

(
ν − νpν2

±
)2

+ k(lie)
2
ẑ (ν + νp)2

]1/2; (3.55)

the spin force (see equation (3.9)) is given by

F (spin) = sγnγpF (Riem), (3.56)
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where F (Riem) does not depend on s (but it depends on ν in this case):

F (Riem) = −ν + νp

�

{(
ν − νpν2

±
)
k(lie)ρ̂∂ρ̂k(lie)ρ̂ + (ν + νp)k(lie)ẑ∂ρ̂k(lie)ẑ

− ρκ2
(lie)k(lie)

2
ẑ (ν + νp) − ν − νpν2

±
ν + νp

[
ν + νp

(
1 + ν2

±
)]

k(lie)
3
ρ̂

− 1

ν + νp

{
ν2

[
1 +

1

1 + ν2±

]
+ ννp

[
ν2

± +
2

1 + ν2±

]

+ ν2
p

[
2ν2

± +
1

1 + ν2±

] }
k(lie)ρ̂k(lie)

2
ẑ − ν + νp

1 + ν2±

k(lie)
4
ẑ

k(lie)ρ̂

}
eρ̂

− ν + νp

�

{(
ν − νpν2

±
)
k(lie)ρ̂∂ẑk(lie)ρ̂ + (ν + νp)k(lie)ẑ∂ẑk(lie)ẑ

− k(lie)ẑ[k(lie)
2
ρ̂

(
ν − νpν2

±
)

+ k(lie)
2
ẑ (ν − νp)]

}
eẑ. (3.57)

Contrary to the previous cases, the T supplementary conditions imply that F (spin) does not
depend linearly on ν. This makes the properties of the circular motion of the spinning particles
much richer but also less tractable analytically. Solving both equations (3.12) with respect to
s using (3.56) and (3.57), we find that the following relations hold simultaneously,

s = −m
γn

γp

(
ν2 − ν2

±
) [

γ 2
n

γ 2±
νm̃s − F (Riem)

ρ̂

k(lie)ρ̂

]−1

s = −m
γn

γp

(1 + ν2)

[
2γ 2

n νm̃s − F (Riem)
ẑ

k(lie)ẑ

]−1

,

(3.58)

where the quantity m̃s stands for m̃s = ms/(sγnγp). By eliminating s, we have that νp must
satisfy the following equation:

Aν2
p + Bνp + C = 0, (3.59)

with

A = [(
ν2 − ν2

±
)
ν2

±k(lie)
2
ρ̂ + (1 + ν2)k(lie)

2
ẑ

]
k(lie)ρ̂∂ẑk(lie)ρ̂

+ k(lie)
2
ρ̂

[
− ν2

γ 2±
+ 2ν2

±

]
k(lie)ẑ∂ẑk(lie)ẑ − k(lie)ẑ

[
−ν4

±
(
2 + ν2

±
) 1 + ν2

1 + ν2±
k(lie)

4
ρ̂

+
(
2ν2ν2

± + 3ν2 + 1
)
k(lie)

2
ρ̂k(lie)

2
ẑ + k(lie)

4
ẑ

1 + ν2

1 + ν2±

]

−B

ν
=

[
ν2 − ν2

±
γ 2±

k(lie)
2
ρ̂ − 2(1 + ν2)k(lie)

2
ẑ

]
k(lie)ρ̂∂ẑk(lie)ρ̂

+ k(lie)
2
ρ̂

[
3
(
ν2 − ν2

±
) − ν2ν2

± + 1
]
k(lie)ẑ∂ẑk(lie)ẑ

+ k(lie)ẑ

{
ν2

±
1 + ν2±

{[
3 + ν2

±
(
2 + ν2

±
)]

ν2 +
(
2 + ν2

±
)
(1 + ν4

±)
}
k(lie)

4
ρ̂

+ (1 + ν2)
(
3 + ν2

±
)
k(lie)

2
ρ̂k(lie)

2
ẑ + 2k(lie)

4
ẑ

1 + ν2

1 + ν2±

}
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− C

ν2
= [(

ν2 − ν2
±
)
k(lie)

2
ρ̂ − (1 + ν2)k(lie)

2
ẑ

]
k(lie)ρ̂∂ẑk(lie)ρ̂

+ k(lie)
2
ρ̂

[
2ν2 − ν2

± + 1
]
k(lie)ẑ∂ẑk(lie)ẑ

+
k(lie)ẑ

1 + ν2±

{{[
ν2

± − (
1 + ν2

±
)2]

ν2 − ν4
±
(
2 + ν2

±
)}

k(lie)
4
ρ̂

+
(
1 + ν2

±
)[

ν2 + 2ν2
± + 3

]
k(lie)

2
ρ̂k(lie)

2
ẑ + k(lie)

4
ẑ (1 + ν2)

}
. (3.60)

Let ν(±)
p be the solutions of equation (3.59). By substituting νp = ν(±)

p into either of the
equations (3.58), we obtain a relation between ν and s, which must be considered together
with the following further equation directly descending from the definition (3.8) of νp:

s = −m
ν − νp

γnγpm̃s(1 − ννp)

∣∣∣∣
νp=ν

(±)
p

. (3.61)

As a result, solutions for both quantities ν and s can be derived explicitly. They are very
complicated and poorly illuminating, hence let us consider the case k(lie)ẑ = 0. The spin
tensor is written as

S = sωρ̂ ∧ γp[−νpωt̂ + ωφ̂], (3.62)

being S(T ) = sωρ̂ as from equations (3.4), (3.13) and (3.53), so that (Sρ̂t̂ , Sρ̂φ̂) =
(−sγpνp, sγp) and equation (3.22) reduces to

0 = m
(
ν2 − ν2

±
)

+ s
γp

γn

{
(ν + νp)∂ρ̂ ln k(lie)ρ̂ − k(lie)ρ̂

[
ν + νp

(
1 + ν2

±
)

+ ν
γ 2

n

γ 2±

(
ννp − ν2

±
)]}

.

(3.63)

By solving this equation with respect to s, we obtain

s = m
γn

γp

ν2 − ν2
±

−(ν + νp)∂ρ̂ ln k(lie)ρ̂ + k(lie)ρ̂
[
ν + νp

(
1 + ν2±

)
+ ν

γ 2
n

γ 2±

(
ννp − ν2±

)] . (3.64)

Recalling its definition (3.20), ms becomes

ms = −sγnγpk(lie)ρ̂
[
ννp − ν2

±
]
, (3.65)

and using equation (3.8) for νp, we obtain

s = m

γnγp

1

k(lie)ρ̂

ν − νp

(1 − ννp)
(
ννp − ν2±

) ; (3.66)

this condition must be considered together with equation (3.64). By eliminating s from
equations (3.64) and (3.66), and solving with respect to νp, we have that

ν(±)
p = 1

2

3νν2
±k(lie)ρ̂ ± √

�(
1 + ν2 + ν2±

)
k(lie)ρ̂ − ∂ρ̂ ln k(lie)ρ̂

� =
{

2ν∂ρ̂ ln k(lie)ρ̂ − k(lie)ρ̂

ν

[
ν2

±
(
ν2 − ν2

±
)

+ ν2(2 + ν2)
]}2

− k(lie)
2
ρ̂

ν2

(
ν2 − ν2

±
)2[

ν2(ν2 + 4ν2
±) + ν4

±
]
. (3.67)

By substituting νp = ν(±)
p for instance into equation (3.64), we obtain a relation between ν

and s. The reality condition of (3.67) requires that ν takes values outside the interval (ν̄−, ν̄+),
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with

ν̄± = ±
√

2

4


�

[
� +

√
�2 + 24k(lie)

2
ρ̂ν

4±
]

+ 4k(lie)
2
ρ̂ν

4
±

k(lie)ρ̂ (∂ρ̂ ln k(lie)ρ̂ − k(lie)ρ̂ )




1/2

� = 2∂ρ̂ ln k(lie)ρ̂ − k(lie)ρ̂
(
2 + ν2

±
);

(3.68)

moreover, the timelike condition for |νp| < 1 is satisfied for all values of ν outside the same
interval.

A linear relation between ν and s can be obtained in the limit of small s:

ν = ±ν± + N (T )s + O(s2), N (T ) ≡ N (P ). (3.69)

From this approximate solution for ν we also have that

ν(±)
p = ±ν± + N (T )s + O(s2), (3.70)

and so the total 4-momentum P is given by equation (3.8) with

νp = ν + O(s2). (3.71)

The angular velocities ζ , ζp and their reciprocals coincide with the corresponding ones derived
in the case of P supplementary conditions (see equations (3.49) and (3.51) respectively).

4. Clock effect for spinning test particles

As we have seen in all cases examined above, when the circular motion of spinning test
particles is considered on particular symmetry hyperplanes corresponding to the condition
k(lie)ẑ = 0, the orbits are close to a geodesic (as expected) for small values of the spin s, with

1

ζ(SC,±,±)

= ± 1

ζ±
± |s|JSC, (4.1)

where

JSC = − e2ψ

ρζ 2±
N (SC). (4.2)

Equation (4.1) identifies these orbits according to the chosen supplementary conditions, the
signs in front of 1/ζ± corresponding to orbits which co/counter rotate with respect to a pre-
assigned sense of variation of the azimuthal angle φ, while the signs in front of s refer to a
positive or negative spin direction along the z-axis; for instance, the quantity ζ(P,+,−) denotes
the angular velocity of U, derived under the choice of Pirani’s supplementary conditions and
corresponding to a co-rotating orbit (+) with spin-down (−) alignment, etc. Therefore one can
measure the difference in the arrival times due to the spin after one complete revolution with
respect to a static observer, i.e. what is called the gravitomagnetic ‘clock effect’. This effect
has already been studied in Schwarzschild and Kerr spacetimes [20, 21]. The coordinate time
difference is given by:

�t(+,+;−,+) = 2π

(
1

ζ(SC,+,+)

+
1

ζ(SC,−,+)

)
= 4π |s|JSC, (4.3)

and analogously for �t(+,−;−,−). This time difference can, in principle, be measured giving
some hints for the whole model of spinning test particles in general relativity. In the next
section we shall give explicit examples for superposed Weyl fields corresponding to Chazy–
Curzon particles and Schwarzschild black holes. The values of JSC for the Weyl solutions
here examined are explicitly listed in the following section.
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5. Applications

Our aim now is to apply the theory developed in the previous sections to the static vacuum
spacetimes belonging to the Weyl class and representing the field of a Chazy–Curzon particle
or a Schwarzschild black hole, as well as superpositions of them. We shall identify the whole
class of spatially circular orbits compatible with given values of the spin s and the linear
tangential velocity ν. We also find for each of the circular orbits the parameters which allow
one to evaluate the clock effect which has a direct physical meaning. Most of the results,
however, will be discussed with the aid of plots because of the very long formulae involved in
the treatment of such solutions.

Let us start by describing solutions belonging to the Weyl class [17, 18] and representing
superpositions of two or more axially symmetric bodies. In general these solutions correspond
to configurations which are not gravitationally stable; this fact is revealed by the occurrence of
gravitationally inert singular structures (‘struts’ and ‘membranes’) that keep the bodies apart
making the configuration stable (see, e.g. [28] and references therein). In what follows we list
the metric coefficients for the examined solutions as well as the relevant quantities to evaluate
the clock effect on the mirror symmetry hyperplane (k(lie)ẑ = 0), as pointed out in section 4.

1. The single Chazy–Curzon particle. A single Chazy–Curzon particle is a static
axisymmetric solution of Einstein’s equations endowed with a naked singularity at the
particle position [29–31]. The Curzon metric is generated by the Newtonian potential of
a spherically symmetric point mass using the Weyl formalism; the metric coefficients in
(2.1) read

ψC = −MC

RC
, γC = −1

2

M2
Cρ2

R4
C

, RC =
√

ρ2 + z2. (5.1)

We obtain

ν± = ±
[

MC

ρ − MC

]1/2

,

N (CP ) = − 1

2m

M2
C

ρ3

ν2
±

γ±
e
− 1

2
MC
ρ2 (2ρ−MC)

,

N (P ) = N (CP )γ±

[
3

ν2±

ρ

MC
+ 2

]
,

(5.2)

so that

JCP = 1

2m

M2
C

ρ2

1

γ±
e

1
2

MC
ρ2 (2ρ+MC)

,

JP = JCP γ±

[
3

ν2±

ρ

MC
+ 2

]
.

(5.3)

2. Superposition of two Chazy–Curzon particles. The solution corresponding to the
superposition of two Chazy–Curzon particles with masses MC and mCb and positions
z = 0 and z = b on the z-axis respectively is given by metric (2.1) with functions

ψ = ψC + ψCb , γ = γC + γCb + γCCb , (5.4)

where ψC, γC are defined by equations (5.1), while

ψCb = −mCb

RCb

, γCb = −1

2

m2
Cb

ρ2

R4
Cb

, RCb =
√

ρ2 + (z − b)2 (5.5)
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and γCCb can be obtained by solving Einstein’s equations (2.2):

γCCb = 2
mCbMC

b2

ρ2 + z(z − b)

RCbRC
+ C. (5.6)

The value of the arbitrary constant C can be determined by imposing the regularity
condition

lim
ρ→0

γ = 0; (5.7)

however, it cannot be uniquely chosen in order to make the function γCCb vanish on
the whole z-axis: a γCCb �= 0 gives rise to a conical singularity (see, e.g., [32, 33]),
corresponding to a strut in compression, which holds the two particles apart. The choice
C = 2mCbMC/b2 makes γCCb = 0 only on the segment 0 < z < b of the z-axis between
the sources. In the following we use C = −2mCbMC/b2, that makes γCCb = 0 on the
portion of the axis with z < 0 and z > b.

We obtain

ν± = ±4ρ

[
MC

R2(R − 4MC) + 4MCb2

]1/2

,

N (CP ) = − 1

2m

ν2
±
ρ

[
2 − R3ν2

±
4MC(R2 − b2)

]1/2 [
R4

(
16M2

C − 3b2
)

− 16M2
Cb2(2R2 − b2)

]e− 4MC
R4 [R2(R−2MC)+MCb2]

R6
,

N (P ) = N (CP )
R4

(
3R2 + 32M2

C − 6b2
) − 12MC(R2 − b2)(R3 + 4MCb2)

R4
(
16M2

C − 3b2
) − 16M2

Cb2(2R2 − b2)

×
[

2 − R3ν2
±

4MC(R2 − b2)

]−1/2

,

(5.8)

where R =
√

4ρ2 + b2, so that

JCP = 1

2m

[
2 − R3ν2

±
4MC(R2 − b2)

]1/2 [
R4(16M2

C − 3b2) − 16M2
Cb2(2R2 − b2)

]

× e
4MC
R4 [R2(R+2MC)−MCb2]

R6
,

JP = JCP

R4
(
3R2 + 32M2

C − 6b2
) − 12MC(R2 − b2)(R3 + 4MCb2)

R4
(
16M2

C − 3b2
) − 16M2

Cb2(2R2 − b2)

×
[

2 − R3ν2
±

4MC(R2 − b2)

]−1/2

.

(5.9)

3. The single Schwarzschild black hole. The Schwarzschild black hole solution is generated
by the Newtonian potential of a line source (a homogeneous rod) of mass MS and length
2L (with the further position L = MS) lying on the axis and placed symmetrically with
respect to the origin:

ψS = 1

2
ln

[
R+

1 + R−
1 − 2MS

R+
1 + R−

1 + 2MS

]
, γS = 1

2
ln

[(
R+

1 + R−
1

)2 − 4M2
S

4R+
1 R−

1

]
, (5.10)
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where

R±
1 =

√
ρ2 + (z ± MS)2. (5.11)

The more familiar form of the Schwarzschild solution in Schwarzschild coordinates
(t, r, θ, φ) is recovered by performing the coordinate transformation

ρ =
√

r2 − 2MSr sin θ, z = (r − MS) cos θ. (5.12)

We obtain

ν± = ±

 MS√

ρ2 + M2
S − MS




1/2

,

N (CP ) = 0, N (P ) = −3

2

M2
S

mν2±

1

ρ3
,

(5.13)

so that

JCP = 0, JP = 3

2

1

m
. (5.14)

Note that in this case no clock effect is found if the CP supplementary conditions are
imposed.

4. Superposition of two Schwarzschild black holes. The solution corresponding to a linear
superposition of two Schwarzschild black holes with masses MS and mSb and positions
z = 0 and z = b on the z-axis respectively is given by metric (2.1) with functions

ψ = ψS + ψSb , γ = γS + γSb + γSSb , (5.15)

where ψS, γS are defined by equations (5.10), while

ψSb = 1

2
ln

[
R+

2 + R−
2 − 2mSb

R+
2 + R−

2 + 2mSb

]
, γSb = 1

2
ln

[(
R+

2 + R−
2

)2 − 4m2
Sb

4R+
2 R−

2

]
,

γSSb = 1

2
ln

[
E(1+,2−)E(1−,2+)

E(1+,2+)E(1−,2−)

]
+ C, E(1±,2±) = ρ2 + R±

1 R±
2 + Z±

1 Z±
2 ,

(5.16)

where

R±
1 =

√
ρ2 +

(
Z±

1

)2
, R±

2 =
√

ρ2 +
(
Z±

2

)2
,

Z±
1 = z ± MS, Z±

2 = z − (
b ∓ mSb

)
.

(5.17)

The function γSSb is obtained by solving Einstein’s equations (2.2). The value of arbitrary
constant C can be determined by imposing the regularity condition (5.7); we make the
choice C = 0, so that the function γSSb vanishes on the portions of the z-axis outside the
sources (that is, for z > b + mSb and z < −MS).

We obtain

ν± = ±4ρ

[
MS(R+ + R−)

B1

]1/2

,

N (CP ) = −768ρ
MS

m

b2 − 4M2
S

(R+ + R− + 4MS)2
[
(4ρ2 + b2 + R+R−)2 − 16M4

S

] B3

B3/2
1 B1/2

2

,

N (P ) = N (CP )

2

(4ρ2 + b2 + R+R−)2 − 16M4
S

b2 − 4M2
S

R2
+R2

−(
1 + ν2±

)2

B4

B3

B1/2
2

B3/2
1

, (5.18)
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Figure 1. In the case of CP supplementary conditions, the spin parameter ŝ is plotted as a function
of the linear velocity ν in the case k(lie)ẑ = 0 at a fixed value of the radial distance ρ = 4, for the
single Chazy–Curzon particle (MC = 1), two Chazy–Curzon particles (MC = 1 = mCb , b = 3)

and two Schwarzschild black holes (MS = 1 = mSb , b = 4) respectively. The values of the
geodesic linear velocity ν± corresponding to the given choice of the parameters are ν± ≈ ±0.577
(case (a)), ν± ≈ ±0.834 (case (b)) and ν± ≈ ±0.746 (case (c)) respectively.
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Figure 2. In the case of P and T supplementary conditions (see (a) and (b), respectively), the spin
parameter ŝ is plotted as a function of the linear velocity ν in the case k(lie)ẑ = 0 at a fixed value of
the radial distance ρ = 4, for the single Chazy–Curzon particle (MC = 1, and so ν± ≈ ±0.577).
The shaded region in the T case contains the forbidden values of ν (the limiting values are given by
ν̄± ≈ ±0.413). We avoid showing the behaviour corresponding to the other solutions, since they
are qualitatively the same. We remark that our treatment loses its validity for high values of the spin
parameter; hence, the plots of (a) and (b) should be truncated within the range ŝ ∈ [−ε, ε], ε � 1
a dimensionless parameter denoting somehow the physical region.
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Figure 3. In the case of the single Chazy–Curzon particle, the linear velocity sν± for co/counter-
rotating circular orbits and the corresponding spin parameter ŝ are evaluated on different planes
z = const, and plotted in (a), (c) and (b), (d ) respectively as functions of ρ (and MC = 1), for both
CP (see (a), (b)) and P (see (c), (d )) supplementary conditions. A choice of values of z different
for each plot has been made for the sake of clarity. Solid, dotted and dash-dotted lines correspond
to z = 1, 3, 8 respectively in (a); solid, dotted, dashed and dash-dotted lines refer to the choices
z = 1, 2, 3, 5 in (b) and z = 1, 1.2, 2, 5 in (c); in (d ) we plot only the case z = 3 as an example,
with solid and dotted lines referring to co/counter-rotating orbits respectively.

where the quantities R± and Bi (i = 1, . . . , 4) are defined by

R± = [4ρ2 + (b ± 2MS)
2]1/2,

B1 = R+R−
[
R+R− + 4ρ2 + b2 − 4M2

S

] − 16MSρ
2(R+ + R−),

B2 = B1 − 16MSρ
2(R+ + R−),
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Figure 4. In the case of two Chazy–Curzon particles, the linear velocity sν± for co/counter-rotating
circular orbits and the corresponding spin parameter ŝ are evaluated on different planes z = const,
and plotted in (a), (c) and (b), (d ) respectively as functions of ρ (and MC = 1 = mCb , b = 3),
for both CP (see (a), (b)) and P (see (c), (d )) supplementary conditions. Solid, dotted, dashed
and dash-dotted lines correspond to z = 2, 4, 5.5, 9 respectively in (a), z = 2, 5, 6.5, 8 in (b) and
z = 2, 3, 5, 8 in (c); solid, dotted and dash-dotted lines refer to the choice z = 4, 5, 8 in (d ).

B3 = −16MSρ
2
[
R2

+R2
− + 4M2

Sb2
]
(R+ + R−)2 + R+R−

{−256M3
Sρ2b2

+ (R+ +R−)
[
R3

+R3
− − 32M2

Sρ2(2ρ2 + 4M2
S

)
+ 4M2

S

(
b4 + 4M2

Sb2 − 16M4
S

)]
+ 2MSb(R+ − R−)

[
R2

+R2
− + 16M2

Sρ2 − 8M2
S

(
b2 − 2M2

S

)]}
,

B4 = 8MSρ
2
[
(R+ + R−)2R+R− + 16M2

Sb2
]

+ (R+ + R−)
[−R3

+R3
− + 32

(
b2 − 2M2

S

)
ρ4

− 16b2ρ2
(
b2 − M2

S

)
+ 2

(
b2 − 4M2

S

)(
b4 − 8M4

S

)]
− 2MSb(R+ − R−)

[
R2

+R2
− + 2

(
b2 − 2M2

S

)
(4ρ2 + b2 − 4M2

S

]
. (5.19)



Spinning test particles in Weyl spacetimes 1183

ρ

z=8

z=3

z=1

z=1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

ν

1 2 3 4 5 6

z=5

z=3

z=1.6

z=1z=1

ρ

–20

–10

0

10

20

s

1 2 3 4 5 6

(c) (d)

(a) (b)

ρ

z=5

z=2

z=1.2

z=1 z=1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

ν

1 2 3 4 5 6
ρ

–30

–20

–10

0

10

20

30

s

1 2 3 4 5 6

Figure 5. In the case of the single Schwarzschild black hole, the linear velocity sν± for co/counter-
rotating circular orbits and the corresponding spin parameter ŝ are evaluated on different planes
z = const, and plotted in (a), (c) and (b), (d ) respectively as functions of ρ (and MS = 1), for
both CP (see (a), (b)) and P (see (c), (d )) supplementary conditions. Solid, dotted and dash-dotted
lines correspond to z = 1, 3, 8 respectively in (a); solid, dotted, dashed and dash-dotted lines refer
to the choices z = 1, 1.6, 3, 5 in (b) and z = 1, 1.2, 2, 5 in (c); in (d ) we plot only the case z = 3
as an example, with solid and dotted lines referring to co/counter-rotating orbits respectively.

Thus we get

JCP = 48

m

b2 − 4M2
S

(R+ + R−)2 − 16M2
S

1

(4ρ2 + b2 + R+R−)2 − 16M4
S

B3

(B1B2)1/2

1

R+ + R−
,

JP = JCP

2

(4ρ2 + b2 + R+R−)2 − 16M4
S

b2 − 4M2
S

R2
+R2

−(
1 + ν2±

)2

B4

B3

B1/2
2

B3/2
1

. (5.20)
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Figure 6. In the case of two Schwarzschild black holes, the linear velocity sν± for co/counter-
rotating circular orbits and the corresponding spin parameter ŝ are evaluated on different
planes z = const, and plotted in (a), (c) and (b), (d ) respectively as functions of ρ (and
MS = 1 = mSb , b = 4), for both CP (see (a), (b)) and P (see (c), (d )) supplementary conditions.
Solid, dotted and dashed lines correspond to z = 3, 5, 8 respectively in (a), z = 3, 6, 8 in (b),
z = 3, 5, 8 in (c) and z = 5, 6, 8 in (d ).

Figures 1 and 2 show the behaviour of the spin parameter ŝ as a function of the linear
velocity ν in the case k(lie)ẑ = 0 for a fixed value of the radial distance ρ and for each choice
of supplementary conditions. The spin parameter ŝ = ±|ŝ| = ±|s|/(mµ) is defined as the
signed magnitude of the spin per unit (bare) mass m of the test particle and µ = MC or µ = MS

of the Chazy–Curzon particle(s) or Schwarzschild black hole(s). The symmetry hyperplanes
lie at z = 0 in the case of one-body solutions, and at z = b/2 for equal masses M1 = M2

in the case of two-body solutions, with the bodies located at z = 0 and z = b on the z-axis.
As we can see in figure 1 the CP supplementary conditions appear inadequate since they lead
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to unphysical situations. In all cases considered, in fact, spinning particles at rest (ν = 0)

require an infinite spin; moreover circular orbits with an infinite spin are also found close to
a geodesic (ŝ = 0) in both the single and two Chazy–Curzon particle solutions. The case of
a single Schwarzschild black hole is somehow particular, when CP supplementary conditions
are imposed: in fact, as widely discussed in [20], the only physical solution corresponds to
ν = ν± and ŝ arbitrary.

Despite the formal complexity there is no significant difference among the solutions
we have considered in the behaviour of the spin as a function of the speed in either P or T
supplementary conditions, in contrast with the CP case; thus, it is enough to show the behaviour
referring to the single Chazy–Curzon solution only (see figure 2). As we can see, only the T
supplementary conditions provide physically significant (ŝ − ν) plots for any value of the spin
ŝ. In this case, in fact, the spin ŝ is always bounded; however, the request of smallness for its
magnitude can also give restrictions here, in order to model realistic situations.

About the general case (k(lie)ẑ �= 0), the behaviour of the linear velocities sν± for
co/counter-rotating circular orbits and of the corresponding spin parameter ŝ is shown in
figures 3–6, in the case of CP (figures 3–6(a) and (b)) and P (figures 3–6(c) and (d ))
supplementary conditions, as functions of the radial coordinate ρ and evaluated on different
planes z = const. In the case of T supplementary conditions, the relations defining the
quantities sν± and ŝ are known only implicitly by means of equations (3.58) and (3.61). The
usefulness of the plots in figures 3–6 is that of providing the values of sν± or that of the spin s
necessary to have a circular orbit at any given value of ρ for fixed z.

6. Conclusions

Spinning test particles in circular motion in static vacuum spacetimes belonging to the Weyl
class have been discussed in detail in the framework of the Mathisson–Papapetrou approach
supplemented by standard conditions. In the limit of small spin and on particular symmetry
hyperplanes, the orbit of the particle is close to a circular geodesic and the difference in the
angular velocities with respect to the geodesic value can be of arbitrary sign, corresponding
to the two spin-up and spin-down orientations along the z-axis. For co-rotating and counter-
rotating test particles both spin-up (or both spin-down), a non-zero gravitomagnetic ‘clock
effect’ appears. Here co-rotation and counter-rotation is meant with respect to a preassigned
sense of variation of the azimuth φ. Applications to specific static Weyl spacetimes,
corresponding to a single Chazy–Curzon particle and a Schwarzschild black hole as well
as to two Chazy–Curzon particles and two Schwarzschild black holes, are discussed (mostly
with the aid of plots) for the standard choices of supplementary conditions.
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